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1. I N T R O D U C T I O N  

THE HEAT transfer from a stretching surface is of interest in 
polymer extrusion processes where the object, after passing 
through a die, enters the fluid for cooling below a certain 
temperature. The rate at which such objects are cooled has 
an important bearing on the properties of the final product. 
In the cooling fluids the momentum boundary layer for linear 
stretching of sheet U c z x  was first studied by Crane [1], 
whereas power law stretching U z x" was initially described 
by Afzal and Varshney [2]. 

Heat transfer from a linearly stretched surface U :c x based 
on the above work [1] has attracted the attention of several 
workers. The case of constant wall temperature has already 
been the subject of study [1.3]. Similarly, for a non-uniform 
wall temperature closed form solution in terms of special 
functions has also been reported [5]. The case of uniform 
sheet velocity (zero stretching) is also well documented [7, 
8]. 

The present work deals with heat transfer from an arbi- 
trarily stretching surface U w~ x m for investigating the effects 
of non-uniform surface temperature. Several closed form 
solutions for specific values of m including their numerical 
solutions are presented in this technical note. 

2. E Q U A T I O N S  

Let a polymer sheet emerging out of a slit at origin (.v = 0) 
be moving with non-uniform velocity U(x) in an ambient 

fluid at rest. The coordinate systems shown in Fig. 1, where 
coordinate x is the direction of motion of the sheet and I' 
is the coordinate normal to it. The u and c are velocity 
components in the x and y directions, respectively. Further, 
v is the molecular kinematic viscosity and a the Prandtl 
number of the fluid. The boundary layer equations of mass, 
momentum and energy for two-dimensional constant pres- 
sure flow in usual notations are as follows : 

u~+r ,  = 0 (I) 

uu, +cu,. = vu,, (2) 

u T , + v T ,  = a  'vT,,.. (3) 

The boundary conditions for the flow induced by stretching 
sheet (issuing from the slit x = 0) moving with non-uniform 
surface speed U(x) in quiescent environment are : 

y = 0 .  u =  U(x), c = O ,  T =  T, (x)  (4) 

.t'/6---, :~, u ~ O ,  T-- ,  T . .  (5) 

Introducing the similarity variables 

V. l '  U x  

= ,%/(2,~)/(q), '1 = ,%/(2c.')" ¢ = ,,(m~ IV 

T =  T,  + ( T , , - T . ) O ( q )  

2m 
U =  L:,,x", T~ = T~ +Cx" ,  [ } -  (6) 

1 + m 

T== 

- U(x) _- Uox m 

Tw(x) = T=o+ Cx n 

FIG. 1. Coordinate system for the flow induced by a polymer sheet moving with non-uniform surface speed 
in an ambient fluid at rest. 
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the m o m e n t u m  boundary  layer equat ions reduce to 

f "  + f f " -  f l f "  = 0 

.I(0) = o, f ' ( 0 )  = l, f ' ( ,zo) = 0 (7) 

and thermal boundary  layer equat ions to 

a - I O " + f O ' - n ( 2 - f l ) . f ' O  = 0 

0(0) = 1, 0(oo) = 0. (8) 

Equat ions  (7) describing the flow on a stretching sheet were 
first proposed by Afzal and Varshney [2] and the solutions 
for - 2  < fl < 2 were also reported. The later investigations 
[10-13] connected with these equat ions (7) have not cited 
the original paper  [2], while the bulk of  earlier results [2] 
have been entirely reproduced/adopted in these papers. On 
the other  hand Aziz and Na [14] in their book referred to 
equat ions (7) with reference to the original work [2]. 

3. M O M E N T U M  B O U N D A R Y  L A Y E R  

When [1 is large the solution can be obtained by the method 
of  matched asymptotic  expansions [9]. In the outer  layer (r/ 
fixed fl --* ~,~) equat ions  (7) show that to order  I/fl the func- 
tion f i s  constant ,  which fails to satisfy the no slip condition. 
In the inner variables [9] 

F ( Z )  = J'(q)lr, Z = ,11~, ~: = (6//1) ~ • (9) 

the boundary  layer equat ions (7) become 

F ' " - 6 F  ~= = -e ' -FF"  

F(0) = 0 ,  F'(O) = I. 

Using the inner expansion 

F = Fo+e,~-Fi + . . .  (10) 

the solution to equat ions for F,, and F~ which matches with 
the outer  solution is 

Z 
F o -  

I + Z  

5 I 

The velocity gradient at the wall is given by 

f " ( O ) =  - 1 +  5/7 + ~ + - . -  . (12) 

4. T H E R M A L  B O U N D A R Y  L A Y E R  

For  fl = 1 closed fo rm so]ut ion o f  the thermal  bounda ry  
layer equat ions (8) has been reported [5]. The solutions for 
other  specific values of  fl are described here. 

(a) fl = - 1 : based on the solution of  m o m e n t u m  bound-  
ary layer equat ions (7) 

.f(q) = (2X) 1/2, X =  tanh=(q/`]2)  (13) 

the thermal boundary  layer equat ions (8) after some manipu-  
lation can be expressed as 

X(I  - X ) h ~ x + [ c - ( a + b +  l )X]h , . -abh  = 0 (14) 

h(O) = i, h(1) = 0 (15) 

where h(X)  = 0(q) and constants  a, b and c are given by 

a + b  = ( I - 2 t r ) / 2 ,  ab = 3ha~2, c = 1/2. (16) 

Equat ion 114) is the well-known hypergeometric equation 
[15] and its solution satisfying boundary  condit ions (15) is 

h = F ( a , b , ~ , X ) + D ( 2 X ) ~ I ' - F ( ½ + a , ~ + b , ~ , X )  (17) 

D = - ` ] 2 F ( I - - a ) F ( I  - b ) / [ F ( ~ - a ) F ( ~ - b ) ]  (18) 

where F(a, b, c, X)  is the hypergeometric function and F(-)  
the complete gamma  function [15]. Fur ther  constants  a and 
h from (16) are given by 

(a,b) = [ l - 2 t rT [ ( I -2 t y )2 -2 4 n t y ]~" - ] /4 .  (19) 

The temperature gradient on the sheet is 

0'(0) = D. (20) 

Solution (17) for specific values o f n  can be expressed into a 
simple function. I f n  = - 1 it becomes 

0 = (1 - X )  ° = sech 2° 0//`]2) (21) 

and if n = 0 then 

0 = l -B.~(~ ,a) /Bl (~ ,a)  

= _  ( - )  
I t , - )  V(~) - -  

w h e r e  B,(n, m) is the incomplete beta funct ion defined by j-, 
B,(m,n)  = - " - I ( l - - - ) "  Id- .  (23) 

0 

If cr = 1 solution (22) is further reduced to 

0 = 1 - ` ] X ,  0'(0) = - 1/.]2. (24) 

(b) For  e = I, n = [ t / (2 -B)  the closed form solution of  
energy equation (8) is 

0' = f (25) 

which shows that classical Reynolds analogy between 
m o m e n t u m  and heat transfer is also valid for flow on stretch- 
ing sheet having non-uni form surface temperatures.  

(c) I fn (2- - f l )  = - - I  the closed form solution o f (8 )  is 

( ;o)  0(q) = exp - a  . f d t  1 , 0'(0) = 0. (26) 

(d) For  general values of  fl and n solutions of  energy 
equation (8), for limiting Prandtl numbers  have been 
obtained by the method of  matched asymptotic expansions.  
The algebra is complicated and for brevity, only final results 
are given here. Fo r  a ---, ~ thermal boundary  layer thickness 
is of  the order  of  a ~ 2 a n d h e a t  transfer rate is given by 

0'(0) = - \/(2a):~ +f"(O)[(2K+ 1 )~x-" - 2Kzq/3 + " "  

where 

(")/('+1 a =  F ~ - + l  F T " K = n ( 2 - f l ) .  (27) 

For  a --, 0, thermal boundary  layer thickness is of  the order 
o f o  and the heat transfer rate is 

0'(0) = - ( l  + K ) . f ( m ) o - + ( l  +K)~-[KJ,_--f(m)J.]a~-+ . . .  

J,,, = f *  [ f ( q )  - .11~.)]"  dq. 128) 

(e) Fo r  fl -+ oe the analysis by matched asymptotic expan- 
sions shows that the solution exists only for n < 0 when the 
heat transfer rate is given by 

o ' ( o )  = i ~ 5 ~ ` ] ( 6 ~ )  , 7 -  + o ( [ J -  :) , ~ < o 

2a = ( 1 - 24ha)ii_, _ 1. (29) 

4. R E S U L T S  A N D  D I S C U S S I O N  

The asymptot ic  solution (12) of  m o m e n t u m  boundary  
layer for fl --+ cc is displayed in Fig. 2. The predictions are 
very good even for fl = 1 where it predicts - 1.079 against 
exact value o f  - 1. The series (12) can further be improved 
through conventional Euler t ransformat ion by recasting it 
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FiG. 2. A compar ison  of  velocity gradient f " (0 )  at the stretching sheet f rom asymptot ic  solution at large 
// with available solut ions:  - - ,  improved asymptotic  series (30); , Merkin 's  [12] series solut ion;  

- - - - - ,  exact results;  , three term solution (12) for/3 ---, o':J. 

in terms of  variable E = I / ( f l+3 )  and noting the fact that as 
fl ---, - 2 ,  (2+f l )s '4 /"(0)  approaches  a constant  [I I] to get 

r, ,i ] 
(2+#)~'"f"(°) = - \ ~ /  L ~ - 4 0  + 4ooo E +  " (30) 

As E --* 1 (~ ---* - 2), the right-hand side of  (30) predicts 0.694 
whereas the exact result [I 1] is 0.743. Relation (30) f o r / / =  I. 

-I 

0 

n : 0  

-1 

0'(o) 
-2 

FIG. 3. Heat  transfer rate on a non-isothermal  stretching 
sheet for ~ = 0.72. 

0 and - 1 predicts - 1.0134, - 0 . 6 4 9 6  and - 0 . 0 4 9  whereas 
correspondingly exact results are represented by - 1 . 0 ,  
-0 .6275  and 0.0. The series solution of  Merkin [12] as dis- 
played in Fig. 3 holds good for - 1.5 < /3  < 2 and fails when 
// becomes larger than 2 or approaches  - 2 .  In conclusior,. 
relation (30) predicts f ' ( 0 )  in the entire domain  o f / / r a n g i n g  
from infinity to - 2 .  

Numerical  solutions to thermal boundary  layer equat ions 
(8) have been obtained for various values o f / /  and n per- 
taining to two values of  Prandtl  number  a = 0.72 (air) and 
7 (water). The wall temperature  gradient 0'(0) is displayed 
in Fig. 1 for o -=  0.72. For  n > 0, or more precisely 

-I 0 

n:O -2 

if(o) ! 
-4 -  

-6 

-8 

0 1 2 

FIG. 4. Heat transfer rate on a non-isotherma] stretching 
sheet for a = 7_0. 
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n(2- /3 )  > 0 the temperature gradient 0'(0) is negative when 
the heat flows from a surface to the ambient fluid. For a fixed 
value of n the magnitude of  heat transfer rate decreases as/3 
increases. For a fixed ~ the magnitude of  heat transfer 
increases as n increases. For o" = 7 (water), the numerical 
solutions are displayed in Fig. 4. For n = - I the heat trans- 
fer rate changes sign through an infinite discontinuity, for 
a = 7 it occurs around p = 0. This behaviour is also shown 
by closed form solutions, but such a behaviour is physically 
unrealistic and corresponds to breakdown of  boundary layer 
theory. The closed form solutions presented in Section 3 
agree with the derived numerical solutions. 
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