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1. INTRODUCTION

THE HEAT Lransfer from a stretching surface 1s of interest in
polymer exlrusion processes where the object, alter passing
through a die. enters the fluid for cooling below a certain
temperalture. The rate al which such objects are cooled has
an important bearing on the properties of the final product.
In the cooling fluids the momentum boundary layer for linear
stretching of sheet U oc x was first studied by Crane [l].
whereas power law stretching U « x™ was inilially described
by Alzal and Varshney (2).

Heat transfer from a linearly stretched surlace U = x based
on the above work [[] has attracted the atiention of several
workers. The case of constant wall temperalure has already
been (he subject of study [1. 3]. Similarly, for a non-unilorm
wall temperature closed form solulion in terms of special
functions has also been reported [S]. The case of uniform
sheel velocily (zero stretching) is also well documented [7,

fluid at rest. The coordinate systems shown in Fig. |. where
coordinate x is the direction of motion of the sheet and y
is Lhe coordinale normal (o it. The « and r are velocily
components in the x and y directions, respectively. Furlner,
v 1s Lhe molecular kinematic viscosity and ¢ the Prandtl
number of the fluid. The boundary layer equations of mass,
momentum and energy for two-dimensional constant pres-
sure flow in usual notations are as follows:

e+r, =0 (n
wu +ou, = vi,, (2)
uT . +ovT, =0 "vT,.. (3)

The boundary conditions for the flow induced by strelching
sheel (issuing from the slit x = 0) moving with non-uniform
surface speed U(x) in quiescenl environment are :

8]. y=0, u=U(x), vt=0, T=T,(x) 4
The present work deals with heat transler from an arbi- yo—x, u—0 T-T,. (5)
trarily stretching surface U oc x™ for investigating the eflects
ol non-uniform surface temperature. Several closed form  Introducing the similarity variables
solulions for specific values ol m including their numerical , .
§ - . ; o Uy . Ux
solutions are presented in this technical note. ¥ =vJQ25 /), n= . &=
- \,\/(2@ vim+1)
2. EQUATIONS T=T,+(T,=7,)0(n)
Let a polymer sheet emerging out of a slit at origin (x = 0) T _ o _ 2m

be moving with non-uniform velocity U(x) in an ambient UsUn" T.=T,+Cx" fi= l+m (6)
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FiG. 1. Coordinate system for the flow induced by a polymer sheel moving with non-uniform surface speed
in an ambient fluid at rest.
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the momenlum boundary layer equations reduce to

SUH =B =0

J0y=0, [O) =1, f(x)=0 O]
and thermal boundary layer equations to
7'\ +f0'—n(2—P)f0=0

00y =1, 0O(oo)=0. (8)
Equations (7) describing the flow on a stretching sheet were
first proposed by Afzal and Varshney [2] and the solutions
for —2 < fi < 2 were also reported. The later investigations
[10-13] connected with these equations (7) have not cited
the original paper [2], while the bulk of earlier results [2]
have been entirely reproduced/adopted in Lhese papers. On

the other hand Aziz and Na [14] in their book referred to
equations (7) with reference to the original work [2].

3. MOMENTUM BOUNDARY LAYER

When flis large the solution can be obtained by the method
of matched asymptotic expansions [9]. In the outer layer (
fixed f§ — ou) equations (7) show that to order 1/ the func-
tion fis constant, which [ails to satisfy the no slip condition.
In the inner variables [9]

FZ)=fme, Z=nle, c=(6/)"" 9)

the boundary layer equations (7) become

F"—6F"? = —¢'FF"
FOy=0, F@=1.

Using the inner expansion
F=Fy+e'Fi+ - (10)

the solution to equations lor F,, and F, which maltches with
the ouler solution is

P Z
T 1+Z

Fo=t| Sangezy4d > ! (1

AT +z T+ |

The velocity gradient at the wall is given by
. 28\ 1 18
! (0)——<?> |:l+ﬁ+125ﬁ:+ ]

4. THERMAL BOUNDARY LAYER

For f = | closed [orm solution of the thermal boundary
layer equations (8) has been reported [5]. The solutions for
other specific values of f§ are described here.

(a) f = — | : based on the solution of momentum bound-
ary layer equations (7)

f(n) = (@2X)", X =tanh®(n/\/2) (13)

the thermal boundary layer equations (8) after some manipu-
lation can be expressed as

X=X +[c—(a+b+1)X]h,—abh =0  (14)
h(0)=1, A =0 (15)

where 2(X) = 6(n) and constants a, b and c are given by
a+b=(1-20)/2, ab=3nc/2, c¢=1]2. (16)

Equation (14) is the well-known hypergeometric equation
[15] and its solution satisfying boundary conditions (15) is

h=Fa,bX)+DQX)*Fl+a,i+6,LX) (U7
D= — /2Tl —a)[(1-b)/[T(i—a)T(1—b)] (18)

(12)
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where F(a, b, ¢, X) is the hypergeometric [unction and I'(z)
the complete gamma [unction [15]. Further constants a and
b from (16) are given by

(a.b) = [l =26 F {(| —20)* —24ng} ""?]/4.

The temperature gradient on the sheet is

19

00y = D. (20)

Solution (17) for specific values of n can be expressed inlo a
simple [unction. If n = —1 it becomes

0 = (1-X)° = sech* (n/,/2) (V1))

andif n = 0 then
0 =1-B.10)/B (s a)

__ /(2 F'G+o) (22)
B n/ I'(a) -

where B, (n, m) is the incomplete beta (unction defined by

B.(m,n) =J;\ =Ml =y (23)
If ¢ = | solution (22) is further reduced to
0=1-J/X, 00 =-1//2 (24)
(b) For ¢ = 1, n = #/(2—f) the closed form solution ol
energy equation (8) 1s
0= (25)

which shows that classical Reynolds analogy between
momentum and heat transfer is also valid for flow on stretch-
ing sheet having non-uniform surface temperatures.

(c) If n(2—pf) = — | the closed form solution of (8) is

) = exp(—of" f dn), 0'(0) = 0.
0

(d) For general values of f# and n solutions of energy
equation (8), lor limiting Prandtl numbers have been
obtained by the method of matched asymptotic expansions.
The algebra is complicated and for brevity, only final results
are given here. For ¢ — o0 thermal boundary layer thickness
1s of the order of ¢~ "2 and heat transler rate is given by

0(0) = —/Qo)a+/"(0)(2K+ 1 )a” —2Ku]/3+ -

where
K I1+XK
a= r(E + 1)/r<T) K=nQ2-p). (27)

For ¢ — 0, thermal boundary layer thickness is of the order
of o and the heat transfer rate is

0) = —(1+K)f(0)o+ (1 + K)'[KJ,—f(c0) ]\ Jo 2+ -

(26)

g, = j L/~ ()] dn. (28)
i
(e) For f — oo the analysis by matched asymptotic expan-
stons shows that the solution exists only for n < 0 when the
heat transfer rate is given by

142
0'(0) = ﬁ\/(eﬁ)[n— % +O(p" 1)], n<o

2u = (1 —24n0)'* — 1. 29)

4. RESULTS AND DISCUSSION

The asymplotic solution (12) of momentum boundary
layer for # — oo is displayed in Fig. 2. The predictions are
very good even for ff = | where it predicts — 1.079 against
exact value of — |. The series (12) can further be improved
through conventional Euler transformation by recasting it
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F1G. 2. A comparison of velocity gradient /”(0) at the stretching sheet [rom asymptotic solution al large
B with available solutions: ——, improved asymptotic series (30); ———, Merkin’s [12] series solution ;
—-—, exaclt results; ——, three term solution (12) for f — o.

in terms of variable £ = [/(+ 3) and noting the fact thal as
B - —2,(2+ Y4 (0) approaches a constant [I1] to get
8l

24+/)0) = 4L Al E+--- 30
(+/)f()__ﬁ I_E_E+W+ - (30)

As E = 1(f » —2), the right-hand side of (30) predicts 0.694
whereas the exact result [11] is 0.743. Relation (30) for ff = I.

FiG. 3. Heat transfer rate on a non-isothermal stretching
sheet for o = 0.72.

0 and —1 predicts —1.0134, —0.6496 and —0.049 where.as
correspondingly exacl results are represented by —1.0.
—0.6275 and 0.0. The series solution of Merkin [12] as dis-
played in Fig. 3 holds good for — 1.5 < f# < 2 and fails when
/i becomes larger than 2 or approaches —2. In conclusior.
relation (30) predicts /”(0) in the entire domain of f§ ranginz
from infinity to —2.

Numerical solutions to thermal boundary layer equations
(8) have been obtained lor various values of f§ and n per-
taining to two values of PrandU number ¢ = 0.72 (air) and
7 (water). The wall temperature gradient 8'(0) is displayed
im Fig. | for ¢ =0.72. For n>0, or more precisely

F1G. 4. Healt transfer rate on a non-isothermal stretching
sheet for ¢ = 7.0.
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n(2—f}) > 0 the temperature gradient §'(0) is negative when
the heat flows from a surface to the ambient fluid. For a fixed
value of n the magnitude of heal transfer rate decreases as f§
increases. For a fixed f the magnitude ol heal transfer
increases as n increases. For ¢ = 7 (water), the numerical
solutions are displayed in Fig. 4. For n = — | the heat trans-
fer rale changes sign through an infinite discontinuity, for
a = 7 1t occurs around § = 0. This behaviour is also shown
by closed form solutions, but such a behaviour is physically
unrealistic and corresponds to breakdown of boundary layer
theory. The closed form solutions presented in Section 3
agree with the derived numerical solutions.
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